Novel Attack Detection Using Fuzzy Logic and Data Mining
نویسندگان
چکیده
Intrusion Detection Systems are increasingly a key part of systems defense. Various approaches to Intrusion Detection are currently being used, but they are relatively ineffective. Artificial Intelligence plays a driving role in security services. This paper proposes a dynamic Intelligent Intrusion Detection System model, based on specific AI approach for intrusion detection. The technique that is being investigated includes fuzzy logic with network profiling, which uses simple data mining techniques to process the network data. The proposed hybrid system combines anomaly and misuse detection. Simple fuzzy rules, allow us to construct if-then rules that reflect common ways of describing security attacks. Suspicious intrusions can be traced back to its original source and any traffic from that particular source will be redirected back to them in future. Both network traffic and system audit data are used as inputs for the
منابع مشابه
Designing an Intelligent Intrusion Detection System in the Electronic Banking Industry Using Fuzzy Logic
One of the most important obstacles to using Internet banking is the lack of Stability of transactions and some misuse in the course of transactions it is financial. That is why preventing unauthorized access Crime detection is one of the major issues in financial institutions and banks. In this article, a system of intelligence has been designed that recognizes Suspicious and unusual behaviors...
متن کاملEvaluation of Different Data Mining Algorithms with KDD CUP 99 Data Set
Data mining is the modern technique for analysis of huge of data such as KDD CUP 99 data set that is applied in network intrusion detection. Large amount of data can be handled with the data mining technology. It is still in developing state, it can become more effective as it is growing rapidly. Our work in this paper survey is for the most algorithms Data Mining using KDD CUP 99 data set in t...
متن کاملIntrusion Detection using Fuzzy Data Mining
With the rapid expansion of computer networks during the past few years, security has become a crucial issue for modern computer systems. A good way to detect illegitimate use is through monitoring unusual user activity. The solution is an Intrusion Detection System (IDS) which is used to identify attacks and to react by generating an alert or blocking the unwanted data. For IDS, use of genetic...
متن کاملInternational Journal of Computer Application Issue 4, Volume 1 (February 2014) Available online on http://www.rspublication.com/ijca/ijca_index.htm ISSN: 2250-1797
By increasing use of computer network and internet using Intrusion Detection System has become more popular. The main drawback of IDS is to generate alert to system administrator based on malicious activities that violates security policies. Recently fuzzy logic plays a vital role in detecting attacks using various rule generation technique. This paper proposed a new concept of using various fu...
متن کاملUse of Genetic Algorithm with Fuzzy Class Association Rule Mining for Intrusion Detection
In today’s life Intrusion Detection System gain the attention, because of ability to detect the intrusion access efficiently and effectively as security is the major issue in networks. This system identifies attacks and reacts by generating alerts or blocking the unwanted data/traffic. Intrusion Detection System mainly classified as Anomaly based intrusion detection systems that have benefit of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006